The Bonds Integer

Since the first article on this topic was published on my blog a lot of people have expressed curiosity about this special number of mine, the “Bonds Integer”. “What’s so special about it?” people ask.

Well I think it’s kind of special. It’s three hundred fifty five thousand six hundred seventy one digits long (355 671 digits long).

The first thousand digits goes like this:

985310887760040894785325790923110733569172313379698201920279221700657547827237932471087377722789194213347050172859028902826144505754240
465202252512859932265719684847826169738590770955277681881351603369916573502999977803432701983844771993748428541001189867229498362250127
201872670675855738544351755083202528277487083408625895927813111546363452891140837110582572452013104751839194200293681882170077708003469
753532062099163405437488825802552778657469472741364369659170062563957766899607454778824042305378749651925327685934303799260447100163731
881720296705492480657476668192306753633024301619863772611891558137619296470872078778887369302251684639439179821679362636654905742282897
410612462568733140982749313103762845457417321502698188762252176286634107424335002548174623665959947647503141761039107452249097275964038
071007019601645089950090403544349778240409742719235941376106657139122427077979104025003944470936751542981001493980965094985705141517883
8061071767515174350125673535138393450945984317006308570
...

For practical reasons i omit 353 671 digits but here are the last thousand digits. You can see that it’s an odd number.

33929337262974345875303704307539509446776859172215037587736165296279633238892798409773824624619503009193022800305162
04855379484183556732853493170022645264310734781848419878535253686980578641094034906588585349168858930598429316375925
13471438693394396472584536757865773457617753325125066297384417129240442681180628239905897525476788153800107278776364
74113999790170377893021268552992451373394407472059137219183486332485466118950364158109425567910460650731981978885070
54361337970210930167434117109115533811431263474907534167816114154365937765331780305057832703525871996666529503159468
28575686598283710452988596234670718538308089133565152633073541636120296653338379480498893430400553627561704954442336
60369842387990312683868020040003803851729730104264447685712258052912609009755011196713365725734337017548877110754003
88255532748796606938181457549775416587771754763824488174160895061397902908293224552062744455310674480668080511240349
305121261237541757230368117165727977853174984193548044532176953305040241

So, what’s the use of this number?

The use I suggest is that we divide the (base 27) “decimal” expansion of Pi in chunks exactly this big

By using this chunk size I claim that examining a completely arbitrary chunk of Pi will make the probability 63.2% of finding there a complete encoded reproduction of Douglas Adams The Hitchhikers Guide to the Galaxy.

Annonser

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s